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Abstract. In a charge-stabilized colloidal solution, the large colloidal particles are surrounded
by microions that are up to four orders of magnitude smaller than the colloidal particles. Because
of this size asymmetry, it is desirable to obtain an effective one-component description of the
mixture where the colloidal particle plus its ionic atmosphere is treated as one, dressed particle.
The effective pair potential between these dressed particles is a screened Coulomb potential. The
screening depends, of course, on the density distribution of the small ions around and between the
big colloidal particles. If the colloidal charge and the concentration of the ions is not too high, this
distribution can be approximately determined from the linearized Poisson–Boltzmann equation,
and the resulting effective pair potentials are Yukawa potentials. In concentrated suspensions,
however, the full, non-linear Poisson–Boltzmann equation must be solved to determine the density
distribution of the small ions. In this article, we suggest a way to obtain effective pair potentials
for this case. We solve the non-linear Poisson–Boltzmann equation around a colloidal particle that
is displaced a certain distance from the centre of its Wigner–Seitz cell. From the resulting density
profile of the ions, we determine the total force acting on the shifted particle as a function of the
displacement. From this function one can then estimate the non-linearly screened pair forces, and,
thus, the effective pair potentials.

Introduction

Many important macromolecules, such as proteins, are soluble in water because they become
charged [1]. The resulting macroions are surrounded by small ions which are released from
the surface of the molecule and which then screen the Coulomb forces between the macroions.
Since the structure, function, correlations, and rheology of the suspension all depend entirely
on interparticle forces, a detailed understanding of the suspension is not possible without an
accurate description of these screened forces.

A model system that lends itself well to the study of these screened Coulomb interactions
is formed by monodisperse polystyrene latex spheres in aqueous solution [2]. It is a typical
example of a charge-stabilized colloidal suspension, which we want to focus on in the present
paper. Such aqueous latex suspensions are made up of highly charged, spherical macroions
(the latex spheres), having a diameter ranging from some tens of nm to several hundreds of
nm, and an ionic atmosphere surrounding each macroion. These ions, with a diameter of a few
Å only, stem from a dissociation of ionizable groups at the surface of the colloidal particle,
or from salt added to the solution. Due to the ionic atmosphere, the colloidal particles are
prevented from coagulating, thereby stabilizing the suspension against flocculation (charge
stabilization).

Such charge-stabilized colloidal suspensions can also be regarded as a realization of an
asymmetric electrolyte, a term that highlights the extreme size and charge asymmetry between
the individual ion species of the suspension. This asymmetry is in fact one of the reasons for
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the ongoing theoretical interest in these systems, as it renders a number of standard theoretical
methods (for instance, the usual liquid-state integral equation theory) useless and calls for new
and alternative approaches.

One way out of the rather involved problems posed by the size and charge asymmetry in
charged colloidal suspensions is the formal contraction of the initial multicomponent system
into an effective one-component description. The idea is to consider the ionic atmosphere,
strongly accumulated near the colloid surface, together with the macroion itself as a new entity,
i.e. a (fictitious) quasiparticle, which might be called a dressed macroion. Instead of the real
multicomponent suspension, one then has to consider a system made up of one species only,
namely the dressed macroions, with new, effective interactions between them.

The question of how to find such effective forces is not new, but has been the subject
of numerous research efforts, the first of which was published as early as 1941. It is the
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [3] which is still generally accepted
as the basic theory of interactions between spherical macroions. It predicts a repulsive
Yukawa-like effective potential which is derived from the linearized Poisson–Boltzmann (PB)
equation (linear screening). However, the linear approximation is only valid if the mean-field
electrostatic potential is small, i.e. in the limit of small counterion densities and macroion
charges.

This article addresses the question of how to find such effective interparticle forces in
charge-stabilized colloidal suspensions when this linear approximation fails, i.e. in a parameter
regime where the full, non-linear PB equation instead of its linearized form is required to find
sufficiently accurate mean-field potentials. The screening of the Coulomb forces by the ionic
atmosphere is then referred to as non-linear screening. The direct way to come to such PB-
based effective pair potentials is clear: in principle, one has to solve the multicentred PB
equation for the microions in the external field of the fixed macroions. Doing that for every
possible configuration of macroions, one would end up with the effective total potential energy
as a function of the positions of all macroions which one had to approximate by a sum of
pairwise additive pair potentials. Undoubtedly, a difficult, not to say impossible, task.

Our idea is to consider just one specific configuration of macroions, namely a slightly
distorted fcc configuration. For this configuration, we will solve the non-linear PB equation
for one macroion in its Wigner–Seitz (WS) cell. From the calculated density profiles we can
then determine the total force acting on the macroion by integrating the stress tensor in an
appropriate way. It is clear that this force is directed towards the centre of the WS cell so as
to restore the perfect fcc symmetry. This total force can then be decomposed into pair forces
between the dressed colloidal particles in neighbouring WS cells. The non-linearly screened
pair forces thus determined are finally compared with pair forces from standard DLVO theory.

Let us briefly mention some of the important papers in this field [1, 4]. Several authors
have attempted to extend the useful domain of effective Yukawa interactions by replacing
the bare macroion charge by a smaller effective (renormalized) charge Z∗ [5–7] which takes
account of the non-linear screening. For regions far from the surface of the colloid, one
can then still resort, even in the case of highly charged macroions, to a Debye–Hückel-like
approach by using Z∗ instead of the real charge Z. For small colloidal charges, the Z∗ thus
determined has recently been shown to reproduce results from primitive model calculations
quite nicely [8]. Experimentally, this concept has been used many times to describe interaction-
dependent properties of colloidal suspensions such as phase behaviour [9], the structure of
binary mixtures [10], the diffusive dynamics [11], and electrokinetic phenomena [12].

An idea similar to ours has been proposed by Belloni and co-workers in reference [13]
where the eccentric PB cell model as a natural extension of the standard PB cell model is
discussed. From the older papers, we mention that of Beresford-Smith, Chan, and Mitchell
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who suggested modifications of the DLVO pair potential so as to account for the effect of
the colloidal concentration [14], and those of Senatore and Blum [15] and Nägele, Klein, and
Medina-Noyola [16] who studied, at very large volume fractions, the effect of the finite size of
the microions on the macroion–macroion structure factor. In reference [7], Belloni calculated
the structure factors for a mixture of charged hard spheres (primitive model) using the mean-
spherical approximation, and derived from it different expressions for the effective potential
depending on the volume fraction of the colloidal particle and the finite size of the small ions.

Starting with section 1, where we define more precisely what is meant by ‘effective
potentials’, we describe in section 2 how the non-linear PB equation can be formally introduced
into the problem. Section 3 then explains our idea, and discusses, in particular, the important
role of the boundary conditions, while in section 4 the density profiles obtained from the
non-linear PB equations are presented. Section 5 explains how these profiles can be used to
determine forces and how these forces are related to the effective pair forces that we want to
determine. We conclude in section 6 with a short summary.

1. The model

We study a suspension of identical spherical macroions, each bearing a charge of +Ze. The
density of the macroparticles is np = Np/V which is the inverse of the volume per particle
denoted by VWS (in the crystalline phase this is the volume of the WS cell). Also present are
Nm counterions, each bearing a charge of −e. Their density is nm = Nm/V . For simplicity,
we restrict ourselves to the salt-free case. The solvent (water) is assumed to be a continuum
of dielectric constant ε (primitive model), while the microions are considered to be pointlike
particles. The total number of negative microions equals the number of macroionic charges,
i.e.NpZ = Nm. This model is characterized by a total Hamiltonian consisting of Hamiltonians
for both macroions and microions, Hp and Hm, and the microion–macroion interaction term,
Hpm:

H = Hp +Hpm +Hm. (1)

The Helmholtz free energy F derived from this model Hamiltonian may be written as

exp(−βF) = Trp Trm exp(−βH)
= Trp exp(−βHp)Trm exp(−β(Hpm +Hm))

= Trp exp(−βHeff
p ) (2)

where Trp and Trm denote phase-space integrals over the macroion and microion phase space.
β = 1/kBT is the inverse temperature. The effective Hamiltonian Heff

p introduced in this
equation is the sum of the direct Hamiltonian Hp and a free energy Fm, which reads

βFm({ �Ri}) = − ln(Trm exp(−β(Hpm +Hm))). (3)

It depends on the positions of allNp macroions which we denote by { �Ri}, and can be interpreted
as the free energy of an inhomogeneous fluid of microions in the external field of the macro-
ions. We see that by introducing an effective Hamiltonian the multicomponent system is now
reduced to an effective one-component system. The particles of this new system are at { �Ri};
the forces between them can be derived from the total potential energy

V effp ({ �Ri}) = Vp({ �Ri}) + Fm({ �Ri}) (4)

which is the sum of the direct potential energy between the bare macroions and the free-energy
contribution of the microionic fluid between them†.

† This section is a condensed version of a more detailed presentation of the subject in reference [19].
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With the preceding paragraph we can define more precisely what we aim to find in the
following. It is the effective pair potential veff between the dressed macroions whose form
we want to determine such that for all realistic configurations { �Ri} the sum of veff over all
interparticle distances Rij = | �Ri − �Rj | gives the best approximation possible to the total
potential energy of equation (4):

V effp ({ �Ri}) ≈
∑
i<j

veff (Rij ). (5)

To that end, we first need to find V effp for any given configuration { �Ri} of macroions. This
quantity is based on the free energy Fm({ �Ri}) of the microionic fluid which one can approx-
imately determine from a density functional approach as we will discuss now.

2. The non-linear Poisson–Boltzmann equation

The inhomogeneous distribution of the microions in the external field of the macroions at { �Ri}
is characterized by the equilibrium density profile ρ(�r). In a mean-field approach, neglecting
all microion–microion correlations, this density distribution can be obtained from the solution
to the PB equation:

∇2�(�r) = 4πλBρ(�r) (6)

where � = eβ is the normalized mean-field electrostatic potential and λB = e2/(εkBT ) is
the Bjerrum length. This equation is different from the ordinary Poisson equation, since the
density itself depends on the potential, namely through the Boltzmann factor:

ρ(�r) = nme−�(�r) (7)

which makes equation (6) a complicated non-linear differential equation. In most cases, it can
only be handled numerically once the boundary conditions are specified. For our case at hand,
these boundaries are given by the spherical surfaces of all macroions where either the potential
or the electric field is fixed.

On the other hand, one can show that the solution ρ(�r) to the PB equation minimizes the
functional

F[n(�r)] =
∫

d�r ′
[
ε

8π
E2(�r ′) + n(�r ′)kBT

(
log{"3n(�r ′)} − 1

)]
(8)

which is a free-energy functional of the total electric field, E, and the variational counterion
density n(�r). " is the thermal de Broglie wavelength. The first term is the Coulomb energy
for the macroions surrounded by a charge density n(�r) of counterions, while the second
term—which is the local free-energy density of the ideal gas—takes into account the entropic
contribution of the discrete microions to the free energy. Inserting now the PB profile ρ(�r)
(for a given configuration of macroions, specified by { �Ri}) into equation (8), we can determine
the free energy Fm({ �Ri}) of the microionic fluid:

Fm({ �Ri}) = F[ρ(�r)] (9)

and thus from equation (4) the total potential V effp of the configuration.
Numerically solving the multicentred non-linear PB equation is an extremely involved

and daunting task, and only a few studies are known where such PB profiles have been used
to actually calculate forces [17, 18]. Because of these difficulties, it is customary to linearize
the PB equation by expanding equation (7) to first order, which changes equation (6) into

∇2� = 4πλBnm(1 −�). (10)
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As shown explicitly by van Roij et al [19], this expansion of the Boltzmann factor leads to a
density distribution ρ(�r) that is the sum

ρ(�r) =
∑
j

ρSM(�r − �Rj) (11)

over spherically symmetric microion-charge distributions ρSM (‘orbitals’) around single
macroions. Placing this sum again into equation (8), one can show that Fm({ �Ri}) can be
expressed by a sum of pairwise additive potentials [19] and, with equation (4), one then finds
the effective pair potential to be given by the well-known DLVO pair potential

veff (R) =
(
Z

eκa

1 + κa

)2
e2

ε

e−κR

R
R > 2a (12)

with a being the radius of the colloidal sphere and κ = (4πλBnm)1/2 the inverse screening
length.

We here want to go beyond this linear screening theory and consider colloidal suspensions
where the linear PB equation is insufficient. The expansion in equation (10) is justifiable only
if |�| < 1 which ceases to be valid if the mean counterionic density becomes too large. Since
nm = Znp, this happens either for a highly concentrated suspension (large np), or for high
chargesZ of the macroions. If |�| becomes too large for the exponential factor to be linearized,
the full non-linear PB equation, equation (6), must be used to determine the profile ρ(�r). The
non-linearity also prevents ρ(�r) from being obtainable from a superposition of single macroion
orbitals ρSM , as in equation (11). We see from equation (9) that, in principle, the PB equation
must be solved for every possible configuration { �Ri}. Even if this enormous task could be
completed, one would still be faced with the problem of how to determine from equations (9)
and (4) the effective potential in the sense of equation (5).

From that, it becomes clear that drastic approximations have to be made in order to
introduce effects of non-linear screening into effective pair potentials. One such approximative
scheme has been introduced by Alexander et al [5] who calculated the PB profile for one specific
configuration of macroions only, namely the fcc configuration of the crystalline phase, and
fitted it to a superposition of effective orbitals:

ρf cc(�r) ≈
∑
j

ρ
Zeff

SM (�r − �Rj). (13)

Note that the l.h.s. of this equation is a density profile based on the full non-linear PB equation,
while the assumption of additivity of orbitals of the r.h.s. is based on the linear PB equation.
However, by introducing a new effective charge Zeff that replaces the bare charge Z of the
macroion, the r.h.s. is modified so that it approximately equals the l.h.s. Inserting equation (13)
in equation (8), we then find the same DLVO pair potential as in equation (12), except that
the real charge Z is now replaced by Zeff . Taken together, one may say that the effective
charges of Alexander et al serve to introduce non-linear PB behaviour in a pair potential that
is formally derived from the linear PB equation.

3. The eccentric cell model

We suggest another way to find pair potentials that are based on the non-linear PB equation.
Like Alexander et al, we also calculate PB density distributions in the crystalline fcc phase,
i.e. we start from the assumption that all macroions are initially located near fcc lattice sites.
However, in contrast to the Alexander model case, we do not require each macroion to occupy
the centre position of its cell, but displace each of them the same small distance X from their
centre positions. This is, of course, not a configuration of macroions where the total free energy
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V
eff
p is minimal; it will certainly change whenX is altered. This then indicates a possible way

to calculate forces: we change X in a systematic manner, calculate for each configuration the
PB profiles, and determine V effp as a function of X. Its derivative will then be a force which,
in a second step, can be decomposed into the effective pair forces.

Figure 1 sketches our model. It shows a macroion (radius a) shifted a distanceX from the
centre of its WS cell which is assumed to have a spherical shape. The radiusR of the WS sphere
is chosen such that its volume equals VWS = 1/np. The volume of the WS sphere outside the
colloidal particle is filled with Nm/Np = Z counterions, so the sphere is electrically neutral.
We determine the counterion density profile inside this WS sphere only. The four spheres of
figure 1 surrounding the central WS sphere are a reminder of the fact that the other macroions
and counterions of the suspension are still present; they enter the calculation of the density
distribution via appropriately chosen boundary conditions for the PB equation.
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Figure 1. The eccentric cell model: the positively charged macroion (charge Z, hatched circles)
inside its spherical Wigner–Seitz (WS) cell is shifted a distance X from the centre. In the cell,
there are also Z negatively charged, small counterions. The macroions outside the cell are drawn
as a reminder of the fact that the cell is surrounded by other WS cells. They are taken into account
by appropriately chosen boundary conditions applied to the Poisson–Boltzmann equation, whose
solution gives the counterion density distribution inside the central cell.

The importance of the role of the boundary conditions at the WS cell boundary in our
problem cannot be overemphasized; their choice determines the final results. This is, of
course, intended, since we are not only interested in the interaction of a macroion with its
own cloud of counterions, but also in its interaction with all Np + Nm ions of the colloidal
suspension. The boundary condition at the WS cell boundary marks the point where we couple
the remaining ions of the suspension to the problem of finding the density profile for the Z
counterions in the WS cell. Hence, the net force acting on the macroion inside this cell can be
regarded as the accumulated force of all the neighbouring ions acting on the centre macroion.
To distinguish it in the following from the pair forces, let us call this net cumulative force
the ‘cavity force’, to indicate that it is the force of the entire spherical cavity surrounding the
macroion acting on that macroion. From the above paragraph, the cavity force is then the
derivative of V effp with respect to X:

Fc(X) = d

dX
V effp (X). (14)

The boundary condition at the WS cell boundary is impossible to determine correctly
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without knowledge of the full solution of the multicentred PB equation. Our way out of
this difficulty is just to assume a boundary condition (in fact, the simplest possible) and to
investigate in the end what macroionic configuration of the neighbouring macroions must be
assumed in order for this condition to be realized. We take the normal component of the electric
field to be zero everywhere at the WS cell boundary. Further on, it becomes evident that this
corresponds to a situation where all neighbouring macroions are shifted the same distance X
in their WS cells.

4. The counterion density profile in a spherical cavity

We numerically solve the PB equation, equations (6) and (7), for the eccentric cell model. Since
there is still a rotational symmetry about the line joining the centre of the WS sphere and the
centre of the colloidal particle, equation (6) is a differential equation in two spatial variables. In
our numerical scheme we use bispherical coordinates [20] because they are symmetry adapted
to the geometric situation of the eccentric cell model. This coordinate system was also used
in similar studies of double-layer forces [21–23].

Like spherical coordinates, bispherical coordinates have two angular coordinates θ and ψ
and a third coordinate η that has the character of a radius, i.e., the coordinate surfaces of the η-
coordinate are again simple spheres†. However, unlike in the case of the spherical coordinates,
these spheres are not concentric with each other, but their centre positions are a function of η.
Figure 2 reveals why this coordinate system lends itself to our problem: Both the surface of the
spherical WS cell and the surface of the macroion correspond to one η-coordinate surface. In
the (η, θ) system, this means that the region external to the macroion is a rectangular domain
which is defined by η0 (surface of macroion) and η1 (surface of WS cell) and θ = 0 and θ = π .
Clearly, in such a rectangle the two-dimensional PB equation is easier to solve numerically
than in the more complicated region of figure 2(a). Another reason why the coordinate system
must by symmetry adapted comes from the typical form of the density profiles. They have
very steep slopes near the colloid surface, so care must be exercised to have an sufficiently
fine grid in this region. A coordinate that is not adapted to the symmetry, like for instance
the usual cartesian coordinate system, would invariably lead to material grid errors near the
curved surface of the colloidal sphere.

We have to specify the boundary conditions on all four sides of this rectangle. They are

Eη(η0, θ) = ZλB/a
2

Eη(η1, θ) = 0

Eθ(η, 0) = 0

Eθ(η, π) = 0.

(15)

Here Eη and Eθ are the electric fields in the η- and θ -directions. The last two boundary
conditions follow from symmetry considerations, the second one has been discussed already,
and the first is just the constant-charge boundary condition at the macroionic surface commonly
used for colloidal particles. One recognizes from equation (15) that we are dealing with a von
Neumann boundary value problem.

As pointed out above, the solution to the PB equation is also the density distribution
that minimizes the free-energy functional of equation (8). Since we can also write down
the functional derivative of the free-energy functional with respect to the variational density
n(�r), one may ask whether one can determine the equilibrium density distribution by direct
minimization of this functional. That, indeed, is the idea of our numerical scheme for finding

† A good introduction to bispherical coordinates applied to a similar problem can be found in reference [21].
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Figure 2. The hatched area in (a) represents a cut through the spherical Wigner–Seitz cell (volume
VWS ) with the off-centre colloidal particle inside (eccentric cell model, figure 1). In the bispherical
coordinate system, this hatched area becomes a rectangle (b). In the (x, y) plane, the η-coordinate
surfaces are spheres whose radii are proportional to the inverse of η. The centre positions of these
spheres are a function of η, so in the (x, y) plane, η = −∞ and η = +∞ are points on the x-axis,
while η = 0 corresponds to the entire (y, z) plane.

the solution to the PB equation: starting from an initial trial density distribution, we (i) solve
the Poisson equation, (ii) calculate the potential and electric field distributions, and from it, (iii)
the free energy, equation (8), and its derivative, and use (iv) simulated annealing techniques
to produce from these two quantities a new density distribution that corresponds to a lower
energy. This iteration cycle is repeated until the free energy does not change any more;
the variational density distribution n(�r) is then equal to the equilibrium density profile ρ(�r).
To solve the Poisson equation, we have expressed the Laplacian in equation (6) in terms of
bispherical coordinates [20] and solved the resulting differential equation using a publicly
available computer code [24].

A good choice of the grid in the domain of bispherical coordinates (η, θ) is of crucial
importance for the accuracy of the calculated profiles. A simple uniform grid proves to be
sufficient only for relatively small macroionic charges (Z < 500). For higher charges, we
have used a non-uniform grid in the (η, θ ) plane which, after each iteration cycle, has been
readjusted to the gradient of the density profile so as to ensure that the number of node points
corresponds to the steepness of the profile. The total number of node points has been varied
from 1000 up to 4000 until a sufficient accuracy has been achieved.

Figure 3 displays a typical counterion density distribution calculated from the PB equation
in the way just described. The volume of the WS cell corresponds to a volume fraction of
the colloidal suspension of φ = 0.05 (φ = 4πnpa3/3 = a3/R3). The macroion is displaced
a distance of X = 0.38R. Its charge is Z = 500, its radius a = 0.368R. From the data of
figure 3, we have produced in figure 4 density profiles along certain θ -directions, now plotted
as functions of the radial distance from the centre of the colloidal sphere. Both figures reveal
that the main feature of the density distribution is the thick layer of counterions located very
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Figure 3. The density distribution of counterions calculated from the mean-field Poisson–
Boltzmann equation around a colloidal macroion (Z = 500) that is shifted a small distance from
the centre of its WS cell. The radius R of the cell corresponds to a colloidal volume fraction of
φ = 0.05 (R = 1357 Å). The density is large near to the colloid surface and falls off rapidly further
away. For the absolute values for the density, see figure 4.
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Figure 4. The thick dashed curve gives the counterionic
density profile if the macroion is centred, while the thin lines
represent cuts through the distribution of figure 3 (from bottom
to top, the angle θ varies from 0 to π in steps of π/6). The
densities are plotted as functions of the radial distance r from
the centre of the colloidal particle.

near to the surface of the macroion. The profile represents a kind of compromise: a balance
between the tendency of the entropy to spread the counterions over as large a region as possible
and the tendency of the electrostatic energy to bring the ions near to the surface of the colloid.
Near the colloid surface this competition is won by the electrostatic contribution, but, for
larger distances from this surface, the resulting layer of counterions around the macroion is
capable of screening the macroionic charges so efficiently that entropy has a better chance to
counterbalance the electrostatic interaction.

In addition, we observe from figure 3 that and how the eccentricity affects the distribution.
Due to the presence of the confining cell boundary, the density of counterions to the left of the
colloid particle is substantially higher than that to the right to it. This asymmetry has a twofold
effect: first, with the centre of negative charge being different from the centre of positive
charge, the whole cell has an effective dipole moment and there will be electric field lines in
the θ -direction at the cell boundary (in the η-direction, the field, of course, vanishes). And,
secondly, the osmotic pressure will also have an (η, θ) dependence. Both will contribute to
the electric stress tensor, and will lead to a net force directed towards the centre of the WS cell.

We can check the reliability of our numerical scheme if we consider the concentric case
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where X = 0. The PB equation, expressed in terms of spherical coordinates, then depends
only on the radius and can be easily solved with standard numerical procedures described, for
instance, in reference [5]. The dashed curve in figure 4 shows the resulting profile. We have
explicitly checked that the density distributions calculated in bispherical coordinates with our
simulated annealing techniques collapse onto this curve if X approaches zero.

5. From cavity forces to pair forces

We can calculate the force acting on the macroion in the WS cell by integrating the stress
tensor

��T =
(
1 +

ε

8π
E2

)
��I − ε

4π
�E �E (16)

over a suitable surface. Here �E = Eθ �eθ + Eη�eη = −�∇ is the electric field and 1 is the
local osmotic pressure which, in the PB theory, is related to the density by kTρ(η, θ). We can
choose any convenient surface S that encloses the macroion and perform the following surface
integration to get the cavity force:

�Fc =
∫
S

��T · �n dS (17)

where �n is a unit vector directed normal to the surface S. For convenience, we integrate over
the surface of the WS cell (η = η1) where Eη is zero. For symmetry reasons, the force will
be directed along the line joining the centre of the WS sphere and the centre of the macroion
(the x-axis), so �Fc = Fc�ex . From equation (17), we thus obtain

Fc = 2π
∫ π

0

(
kBTρ(η1, θ) +

ε

8π
E2
θ (η1, θ)

)
(�eη · �ex) (a sinh η0)

2 sin θ

(cos η1 − cos θ)2
dθ (18)

which we rewrite to find an expression for the dimensionless force, f = βFc 4πλB :

f = π

∫ π

0

(
ρ(η1, θ) 8πλB + (eβEθ(η1, θ))

2
)
A(η1, θ) dθ (19)

where

A(η, θ) = (a sinh η0)
2 sin θ(1 − cos θ cos η)

(cos η − cos θ)3
. (20)

Figure 5 shows the cavity forces calculated from the density profiles using equation (19).
We considered a colloidal suspension of a volume fraction of φ = 0.01, with the colloidal
charges ranging from Z = 200 to Z = 2000. For this volume fraction, the WS cell has a

0.6 0.4 0.2 0.0
X / R

0

50

100

150

Z=200

4
B

π 
λ 

 β

Z=500

Z=1000

Z=2000

F z

Figure 5. Cavity forces calculated from density distributions of
the counterions by integration of the stress tensor, as functions
of the shift X of the colloidal particle in its cell. Force curves
for several charges of the macroion are shown.
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radius of R = 2320 Å. The radius of the colloid is a = 500 Å. Figure 5 gives the force curves
as functions of the displacement X divided by R. For each curve, we calculated 20 density
distributions for varyingX and fitted the data to a sum of two simple exponential functions. We
carefully checked that our results are free from grid errors. A further check of the calculation
can be performed by calculating the total energy V effp (X) as a function of X. Numerically
differentiating this function with respect to the variable X must then lead to the same forces
as one obtains from equation (19) (see equation (14)).

As pointed out above, we want to use these cavity forces to estimate the effective pair
forces between the dressed colloidal particles, or, alternatively, to determine the effective pair
potentials from the total energy of the configuration. We follow equation (5), which for our
case at hand may be written in the form

V effp (X) ≈
∑
j

veff (| �Rj −X�ex |). (21)

Our calculations so far provide us with the function V effp (X) on the l.h.s. of this equation.
Is it possible to estimate from it the effective pair potential inside the sum of the r.h.s. of
the equation? For this, we have to make a number of approximations. The first is that
we assume the sum in equation (21) to be confined to the twelve nearest neighbours of the
central macroion in a fcc crystal, which is justifiable as we expect screened potentials to be
short ranged. These neighbours are located somewhere inside their own (spherical) WS cell,
not necessarily in a central position. Their exact position must be found from the boundary
condition, Eη(η1, θ) = 0, equation (15), since we justified these boundary conditions by
claiming that here the electric field contributions of neighbouring dressed macroions cancel
each other. If a neighbouring WS cell touches the surface of the central WS cell at (θ, φ)
(spherical coordinates, figure 6), the condition of vanishing normal electric field at the touching
point (θ, φ) requires the colloidal particle in this neighbouring cell to be located at

�r(θ) =
(

2R cos θ +X cos 2θ
−2R sin θ −X sin 2θ

)
. (22)

After some algebra, the relative distance between this colloid and the central one is found
to be

r(X, θ) = 2(R +X cos θ). (23)

In the fcc configuration of neighbouring WS cells, there are twelve WS cells touching the
central cell at certain positions. For convenience, we assume that these touching points are
equally distributed over the surface of the central WS cell. This assumption is consistent with
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Figure 6. The central WS cell is surrounded by spherical WS
cells of the neighbouring colloidal particles. Their positions
in their cells are determined by the boundary condition for
the normal component of the electric field (En = 0). This
boundary condition can only be realized if every colloidal
particle is shifted the same distance X in its cell.
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the assumption of a spherical cell. Then the probability P(θ, φ) of finding a touching point at
(θ, φ) is just 12/(4πR2).

With equation (23) andP(θ, φ) to hand, we can approximate equation (21) by the following
integral:

V effp (X) ≈ 2πR2
∫ π

0
veff (r(X, θ))P (θ) sin θ dθ (24)

where the function r(X, θ) from equation (23) embodies the boundary condition at the cell
boundary. This integral can now be brought into the form

V effp (X) = 12

4X

∫ ∞

2(R−X)
veff (r ′) dr ′ (25)

where it is assumed that the pair potential is zero at and beyond 2(R+X). Replacing 2(R−X)
by h, and differentiating equation (25) twice, one finally arrives at

Fc(h)−XF ′
c(h) = −6veff

′
(h) (26)

where we used V eff
′

p (h) = −Fc(h)/2. The prime here denotes derivatives with respect to h.
Equation (26) now gives the desired connection between the pair force and the cavity

force, both as functions of hwhich is the shortest distance between two neighbouring colloidal
spheres (see figure 6). We also realize now that our choice of the boundary condition at the
cell boundary implies, as claimed above, that all neighbouring macroions are shifted the same
distance X in their WS cells. Figure 7 shows the pair force extracted from the data of figure 5
for Z = 2000 using equation (26). It is compared with the cavity force curve from figure 5
and the pair forces derived from the DLVO potential of equation (12). For the latter, we had to
determine the effective charges Z∗ from the one-dimensional spherical PB equation following
the renormalization concept of Alexander et al that we described above†. Note that all three
force curves are plotted against the distance h now. This graph is typical of other force curves
for smaller macroionic charges. As expected, the cavity force is considerably larger than the
pair force for almost all distances because it is the cumulative force of all twelve neighbours
on the central colloidal particle. We furthermore observe that our PB derived pair forces have
a qualitatively different distance dependence when compared with the standard DLVO forces.
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Figure 7. The cavity force of figure 5 for Z =
2000 (dashed curve) is compared with the pair force
(solid line) which has been extracted from the cavity
force by means of equation (26). The latter can be
compared with the DLVO pair force, derived from
equation (12), where an effective charge ofZ∗ = 559
is used.

† At this point we have to take a spherical WS cell that is slightly larger than the radius corresponding to φ = 0.01
(R = 2320 Å). This is because we have implicitly assumed that the WS cells of neighbouring colloidal particles
only touch each other but do not overlap as they would normally do. If one expands the crystal so that R = 2320 Å
spheres in a fcc configuration only touch, the real volume fraction to compare with is φ = 0.74 × 0.01 which results
in a sphere radius of R = 2566 Å. The effect of this alteration on the effective charges is however quite small.
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This is confirmed by figure 8 where the pair forces are plotted for the four different
macroionic charges of figure 5. The four thick lines are (from bottom to top) the pair forces
for Z = 200, 500, 1000, and 2000. They are compared with the renormalized DLVO forces
(dashed lines). All forces are now multiplied by h and plotted on a logarithmic scale so that
the DLVO forces become straight lines for larger distances. In figure 8, we firstly perceive
that the gross features of all four curves calculated from equation (26) are the same, with a
linear behaviour in an intermediate regime (2 < h/2a < 3.5) and non-linear behaviour for
large and small distances. The second observation is that the sequence of curves converges
for increasing charges towards a limiting curve, much as one finds for the DLVO forces. We
know that this is due to counterion condensation which is reflected in the saturation behaviour
of the effective charges. So, we see that this property is not affected by the way in which we
derive the effective pair forces.
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Figure 8. Comparison between DLVO pair forces, equation (12) (dashed lines), and pair forces
obtained from the cavity forces of figure 5 (thick solid lines). For the latter, the four curves
correspond to the following charges (from bottom to top): Z = 200, Z = 500, Z = 1000, and
Z = 2000, while the four DLVO curves are based on the following effective charges: Z∗ = 191,
Z∗ = 383, Z∗ = 500, Z∗ = 559.

6. Summary and outline

For sufficiently diluted colloidal suspensions, or for suspensions of colloids bearing not too
many charges, the effective potential between the dressed quasi-particles is a screened Yukawa
potential which can be derived from the linear Poisson–Boltzmann equation. For more highly
charged colloids or highly concentrated suspensions, this linearization ceases to be valid and
one has to resort to the full non-linear Poisson–Boltzmann equation instead. The question then
is that of whether it is still possible to obtain an effective interaction between the particles of an
effective one-component system. In this article we suggest a way in which such non-linearly
screened pair forces can be determined.

We have seen that the direct method, even on a mean-field level, is not practicable for
realistic systems: one had to determine the free energy of the microionic fluid for every
possible configuration { �Ri} of the colloidal particle in order to find V effp ({ �Ri}) and, from it,
effective potentials. We, here, consider only one specific configuration instead, in which every
macroion is shifted (in a highly correlated way) a distance X from its fcc lattice point, in
such a way that the normal component of the electric field can be assumed to vanish at the
surface of the WS cell. With this boundary condition we have solved the two-dimensional
Poisson–Boltzmann equation for the counterions of one macroion shifted a distance X from
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the centre of its spherical WS cell. Integrating the stress tensor over the cell surface, we can
then determine a force acting on the macroion. We have shown how this cavity force, which
in itself is an interesting quantity, can be used to extract effective pair forces. Finally, we have
compared the forces thus determined with the forces derived from standard DLVO theory using
renormalized charges, and found a qualitatively different distance dependence.

We do not claim that our method is the best possible. We do, however, think that it
improves on the established charge renormalization theory of Alexander et al where forces
are obtained from a fairly ‘ad hoc’ introduction of the effective charges into the DLVO
forces. In this effective charge concept, a configuration of macroions is considered (perfect
fcc symmetry) where the net forces on the macroions are identical to zero, so it is unclear why
this configuration can provide useful information on effective interparticle forces. In contrast
to that, we here come to forces through the investigation of a distortion from perfect symmetry
where integration of the stress tensor really results in non-vanishing net forces. The natural
extension of this work is to consider two colloids in a cell where the presence of all the other
macroions in the solution is again taken into account by the appropriate choice of the boundary
conditions. Here, again, the question will be that of how to choose these boundary conditions.
Work in this direction is in progress.
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[11] Blitzer F, Palberg T, Löwen H, Simon R and Leiderer P 1994 Phys. Rev. E 50 2821
[12] Evers M, Garbow N, Hessinger D and Palberg T 1998 Phys. Rev. E 57 6774
[13] Reus V, Belloni L, Zemb T, Lutterbach N and Versmold H 1997 J. Physique II 7 604
[14] Beresford-Smith B, Chan D Y C and Mitchell D J 1985 J. Colloid Interface Sci. 105 216
[15] Senatore G and Blum L 1985 J. Phys. Chem. 89 2676
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